Повышение скорости фиксации атомно-молекулярных трансформаций позволит быстрее создавать новые лекарства. Сегодня речь идет о чтении одиночных цепей ДНК, для чего их пропускают сквозь поры.
Андроботы способны регенерировать даже нервные волокна. Преимущество новой технологии в том, что андроботы делаются из собственных клеток человека, это снимает опасность их отторжения иммунной системой.
Последовательное возникновение апоморфий в составе гена 18S рРНК на ранних этапах эволюции многоклеточных животных.
Многоклеточные без органов
Особенно глубоко зашла системная редукция у трихоплакса, еще одного объекта эволюционных спекуляций прошлого века. Трихоплакс (“волосатая пластинка”) — наиболее просто устроенное многоклеточное животное, и поэтому многие хотели видеть в нем живого предка всех многоклеточных [8]. В лабораторных аквариумах, где его иногда находят, трихоплакс выглядит как налет грязи на стекле. У этого животного, размером в несколько миллиметров, нет ни переднего, ни заднего конца, ни правой, ни левой стороны. Трихоплакс медленно ползает, напоминая крупную амебу. Когда на его пути встречается скопление водорослей или бактерий, он наползает на него, прижимается к поверхности стекла и в образовавшуюся временную щель изливает пищеварительные соки. Анатомически трихоплакс похож на сильно сплюснутый пирожок, где между двумя слоями жгутиковых клеток заключена тоненькая “начинка” из отростчатых клеток. У него нет ни одного органа, в том числе рта, кишечника, половых желез, органов чувств; нет нервных, мышечных, рецепторных, железистых клеток, которые имеются у гребневиков, отделившихся от ствола многоклеточных раньше трихоплакса, как следует из нашего анализа. Остается признать либо независимое конвергентное происхождение всех этих структур, либо согласиться, что они имелись у общего предка, но утрачены в эволюции трихоплаксом.
Филогенетика недвусмысленно указывает на регресс в эволюции трихоплакса, но не раскрывает его точных механизмов и этапов. Авторитетный в прошлом зоолог Т.Крумбах еще 90 лет назад отверг распространенное тогда мнение об исключительной примитивности трихоплакса и предложил считать его уплощенной личинкой гидромедузы. Хотя теперь трихоплакса рассматривают как взрослое животное (в этом зоологов почему-то убедили дробящиеся яйцеклетки, которые изредка у него бывают), можно использовать идею Крумбаха и предположить, что это многоклеточное животное возникло в результате способности личинок какого-то древнего кишечнополостного к “досрочному” размножению. Такое размножение называется педогенезом, а если оно связано с преждевременным развитием половой системы, то неотенией. Переход к преждевременному размножению личинок и привел к потере морфологических достижений взрослого организма.
Помимо педогенеза можно представить и более постепенный регресс: предок трихоплакса, вместо того, чтобы охотиться на живую добычу, как это свойственно большинству “нормальных” кишечнополостных, стал собирать крошки со дна, все шире раскрывая рот*. Если это так, то у трихоплакса есть рот, притом гигантский — он проходит по краю тела. С таким широким ртом ничего не остается, как стать плоским и потерять завоевания предыдущей эволюции.
* Раньше думали, что и в наше время живет полип с широко открытым ртом — полиподиум, паразитирующий в икре осетровых рыб. Как считалось, его энтодерма вывернулась наружу для лучшего контакта с содержимым икринки. На самом деле это не энтодерма, а специальная зародышевая оболочка, сохраняющаяся у взрослого полиподиума и сменившая функцию См.: Райкова Е.В., Напара Т.О., Ибрагимов А.Ю. Загадочная паразитическая книдария // Природа. 2000. №8. С.25—31.
Выбор из двух предложенных сценариев регресса трихоплакса выходит за рамки задач филогенетики. Очевидно, каждый из них, при сходстве внешнего результата, резко отличается с точки зрения сравнительной анатомии. По первому сценарию трихоплакс обращен к субстрату эктодермой одной из личиночных антимер, сменившей покровную функцию на пищеварительную**, тогда как по второму сценарию — энтодермой.
** Личинки кишечнополостных не могут быть обращены к субстрату энтодермой, поскольку никогда не питаются, и морфологически энтодермальные клетки всегда находятся внутри зародыша.
Чтобы понять, как эволюционировал трихоплакс, необходимо определить первично энтодермальные клетки. По строению или функции клеток взрослого животного этого сделать нельзя — эмбриогенез трихоплакса не описан, и неизвестно, имеется ли он вообще. По всей видимости, морфологическое значение двух эпителиальных слоев и слоя внутренних отростчатых клеток вскоре можно будет определить по экспрессии в них “эктодермальных” и “энтодермальных” генов, участвующих в морфогенезе.
Многоклеточные без тканей
Разберем теперь строение другой области макромолекулы 18S рРНК — шпильку Е10-1. Для простоты сразу скажем результат: кишечнополостные и трихоплакс по этому признаку в точности похожи на… гребневиков и губок, а не на двусторонне-симметричных животных! На первый взгляд кажется, что это противоречит предшествующему выводу. Но противоречие исчезнет, если учесть, что апоморфии возникают последовательно. Сходство в шпильке Е10-1 кишечнополостные имеют не только с гребневиками, но с растениями, грибами и многими одноклеточными, поэтому ему не следует придавать значения. Наоборот, апоморфное сходство двусторонне-симметричных животных между собой свидетельствует о едином их филетическом корне, от которого и ведет историю их специфическая модификация в Е10-1. Кроме “обычных” двусторонне-симметричных животных эта ветвь филогенетического древа включает ортонектид, дициемид [9] и миксоспоридий [10]. Они обладают также апоморфиями в спиралях 42 и 44 и по этому признаку могли уже быть описаны выше, отдельно от одноклеточных, но по состоянию этих спиралей их не отличить от кишечнополостных и трихоплакса. По апоморфии в шпильке Е10-1 мы отличаем их от кишечнополостных, но не от двусторонне-симметричных животных.