Повышение скорости фиксации атомно-молекулярных трансформаций позволит быстрее создавать новые лекарства. Сегодня речь идет о чтении одиночных цепей ДНК, для чего их пропускают сквозь поры.
Андроботы способны регенерировать даже нервные волокна. Преимущество новой технологии в том, что андроботы делаются из собственных клеток человека, это снимает опасность их отторжения иммунной системой.
Альфакетоглутарат, в свою очередь, подвергается окислительному декарбоксилированию, сходному с окислительным декарбоксилированием пирувата: в обоих случаях субстратом является альфакетокислота. Реакция катализируется альфакетоглутаратдегидрогеназным комплексом и требует участия того же набора кофакторов - тиаминдифосфата, липоата, НАД+, ФАД и СоА; в результате образуется сукцинил-СоА - тиоэфир, содержащий высокоэнергетическую связь.
α-кетоглуторат + НАД+ + CoA-SH → Сукцинил-СоА +
СО2 + НАДН+Н+
Равновесие реакции настолько сильно сдвинуто в сторону образования сукцинил-СоА, что ее можно считать физиологически однонаправленной. Как и при окислении пирувата, реакция ингибируется арсенатом, что приводит к накоплению субстрата (альфакетоглутарат).
Продолжением цикла является превращение сукцинил-СоА в сукцинат, катализируемое сукцинаттиокиназой (сукцинил-СоА-синтетазой):
Сукцинил-СоА + ФН + ГДФ↔ Сукцинат + ГТФ + CoA-SH
Одним из субстратов реакций является ГДФ (или ИДФ), из которого в присутствии неорганического фосфата образуется ГТФ (ИТФ). Это - единственная стадия цикла лимонной кислоты, в ходе которой генерируется высокоэнергетическая фосфатная связь на субстратном уровне; при окислительном декарбоксилировании α-кетоглутарата потенциальное количество свободной энергии достаточно для образования НАДН и высокоэнергетической фосфатной связи. В реакции, катализируемой фосфокиназой, АТФ может образовываться как из ГТФ, так и из ИТФ. Например:
ГТФ+АДФ «ГДФ+АТФ.
В альтернативной реакции, протекающей во внепеченочных тканях и катализируемой сукцинил-СоА-ацетоацетат-СоА-трансферазой, сукцинил-СоА превращается в сукцинат сопряженно с превращением ацетоацетата в ацетоацетил-СоА. Впечени имеется диацилазная активность, обеспечивающая гидролиз части сукцинил-СоА с образованием сукцината и СоА.
Далее сукцинат дегидрогенируется, затем присоединяется молекула воды, и следует еще одна стадия дегидрогенирования, приводящая к регенерации оксалоацетата:
Сукцинат + ФАД « Фумарат + ФАДН2
Первое дегидрогенирование катализируется сукцинатдегидрогеназой, связанной с внутренней поверхностью внутренней митохондриальной мембраны. Это единственная дегидрогеназная реакция ЦТК, в ходе которой осуществляется прямой перенос с субстрата на флавопротеин без участия НАД+. Фермент содержит ФАД и железо-серный белок. В результате дегидрогенирования образуется фумарат. Как показали эксперименты с использованием изотопов, фермент стереоспецифичен к транс-атомам водорода метиленовых групп сукцината. Добавление малоната или оксалоацетата ингибирует сукцинатдегидрогеназу, что приводит к накоплению сукцината.
Фумараза (фумаратгидротаза) катализирует присоединение воды к фумарату с образованием малата:
Фумарат +Н2О « L-малат
Фумараза специфична к L-изомеру малата, она катализирует присоединение компонентов молекулы воды по двойной связи фумарата в транс-конфигурации. Малатдегидрогеназа катализирует превращение малата в оксалоацетат, реакция идет с участием НАД+:
L-малат + НАД+ « 0ксалоацетат + НАДН2
Хотя равновесие этой реакции сильно сдвинуто в направлении малата, реально она протекает в направлении оксалоацетата, поскольку он вместе с НАДН постоянно потребляется в других реакциях.
Ферменты цикла лимонной кислоты, за исключением альфакетоглутарат- и сукцинатдегидрогеназы, обнаруживаются и вне митохондрий. Однако некоторые из этих ферментов (например, малатдегидрогеназа) отличаются от соответствующих митохондриальных ферментов.