Повышение скорости фиксации атомно-молекулярных трансформаций позволит быстрее создавать новые лекарства. Сегодня речь идет о чтении одиночных цепей ДНК, для чего их пропускают сквозь поры.
Андроботы способны регенерировать даже нервные волокна. Преимущество новой технологии в том, что андроботы делаются из собственных клеток человека, это снимает опасность их отторжения иммунной системой.
Международные проект «Геном человека» был начат в 1988 г. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн. долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн. долларов, а частные компании – и того больше. В проекте задействованы несколько тысяч ученых из более чем 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы.
Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека. Проект включает в качестве подпроектов изучение геномов собак, кошек, мышей, бабочек, червей и микроорганизмов. Ожидается, что затем исследователи определят все функции генов и разработают возможности использования полученных данных.
Что же представляет собой основной предмет проекта – геном человека?
Известно, что в ядре каждой соматической клетки (кроме ядра ДНК есть еще и в митохондриях) человека содержится 23 пары хромосом, каждая хромосома представлена одной молекулой ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке равна приблизительно 2 м, они содержат около 3,2 млрд. пар нуклеотидов. Общая длина ДНК во всех клетках человеческого тела (их примерно 5х1013) составляет 1011 км, что почти в тысячу раз больше расстояния от Земли до Солнца.
Как же помещаются в ядре такие длиннющие молекулы? Оказывается, в ядре существует механизм «насильственной» укладки ДНК в виде хроматина - уровни компактизации (рис. 1).
Рис. 1. Уровни упаковки хроматина
Первый уровень предполагает организацию ДНК с гистоновыми белками – образование нуклеосом. Две молекулы специальных нуклеосомных белков образуют октамер в виде катушки, на которую наматывается нить ДНК. На одной нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот уровень укладки позволяет уменьшить линейные размеры ДНК в 6–7 раз.
На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый виток составляет 6-7 нуклеосом, при этом линейные размеры ДНК уменьшаются до 1 мм, т.е. в 25-30 раз.
Третий уровень компактизации – петельная укладка фибрилл – образование петельных доменов, которые под углом отходят от основной оси хромосомы. Их можно увидеть в световой микроскоп как интерфазные хромосомы типа «ламповых щеток». Поперечная исчерченность, характерная для митотических хромосом, отражает в какой-то степени порядок расположения генов в молекуле ДНК.
Если у прокариот линейные размеры гена согласуются с размерами структурного белка, то у эукариот размеры ДНК намного превосходят суммарные размеры значимых генов. Это объясняется, во-первых, мозаичным, или экзон-интронным, строением гена: фрагменты, подлежащие транскрипции – экзоны, перемежаются незначащими участками – интронами. Последовательность генов сначала полностью транскрибируется синтезирующейся молекулой РНК, из которой затем вырезаются интроны, экзоны сшиваются и в таком виде информация с молекулы иРНК считывается на рибосоме. Второй причиной колоссальных размеров ДНК является большое количество повторяющихся генов. Некоторые повторяются десятки или сотни раз, а есть и такие, у которых встречается до 1 млн. повторов на геном. Например, ген, кодирующий рРНК повторяется около 2 тыс. раз.