Биологи осваивают сингулярности

Повышение скорости фиксации атомно-молекулярных трансформаций позволит быстрее создавать новые лекарства. Сегодня речь идет о чтении одиночных цепей ДНК, для чего их пропускают сквозь поры.

Создан биоробот из клеток взрослого человека

Андроботы способны регенерировать даже нервные волокна. Преимущество новой технологии в том, что андроботы делаются из собственных клеток человека, это снимает опасность их отторжения иммунной системой.

Строение клетки

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Цитоплазма. Основное вещество цитоплазмы, называемое также гиалоплазмой или матриксом, - это полужидкая среда клетки, в которой располагается ядро и все органоиды клетки. Под электронным микроскопом вся гиалоплазма, располагающаяся между органоидами клетки, имеет мелкозернистую структуру. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты. Последние играют важную роль в движении и соединении клеток между собой в ткани.

В состав цитоплазмы входят вещества белковой природы. Во многих клетках, например у амеб, в клетках различных эпителиев, гиалоплазма содержит тончайшие нити, которые могут переплетаться и образовывать структуры, напоминающие войлок. Эти нитевидные (фибриллярные) структуры связаны с выполнением механической функции: они образуют нечто подобное внутреннему скелету клетки. Фибриллы цитоплазмы не принадлежат к числу постоянных структур: они могут появляться и исчезать при различных физиологических состояниях клетки.

Важнейшая роль гиалоплазмы заключается в том, что эта полужидкая среда объединяет все клеточные структуры и обеспечивает их химическое взаимодействие друг с другом. Именно через цитоплазму происходит диффузия различных веществ, растворенных в воде, которые постоянно поступают в клетку и выводятся из нее. В цитоплазму поступают также твердые частички, попадающие в клетку путем фагоцитоза, поступают и пиноцитозные вакуоли. Все эти вещества передвигаются в ней и повергаются дальнейшей переработке.

Эндоплазматическая сеть (ЭПС). Эндоплазматическая сеть принадлежит к числу органоидов клетки, открытых совсем недавно (1945 – 1946). Расположение сетчатых структур во внутренней части цитоплазмы – эндоплазме (греч. "эндон" – внутри) – и послужило основанием для того, чтобы вновь открытому органоиду дать название эндоплазматической сети или эндоплазматического ретикулума.

Дальнейшее электронномикроскопическое изучение ультратонких срезов разнообразных клеток показало, что сетчатые структуры состоят из сложной системы канальцев, вакуолей и цистерн, ограниченных мембранами. Мембраны ЭПС имеют типичную трехслойную структуру, такую же, как и та, что свойственна и наружной мембране клетки. Каналы, вакуоли и цистерны образуют ветвящуюся сеть, которая пронизывает всю цитоплазму клетки.

Форма каналов, вакуолей и цистерн эндоплазматической сети непостоянна и широко варьирует как в одной и той же клетке в разные периоды ее функциональной деятельности, так и в клетках различных органов и тканей. Для каждого типа клеток характерна определенная структура ЭПС. Наибольшее развитие ЭПС характерно для секреторных клеток с интенсивным уровнем белкового обмена. Слабо развита ЭПС в клетках коры надпочечников, сперматоцитах. В значительной мере степень развития эндоплазматической сети находится в зависимости от уровня дифференцировки клеток. Например, в молодых клетках сальных желез, претерпевающих интенсивное деление, ЭПС развита слабо, но в более зрелых клетках этих желез она выражена очень отчетливо, т. е. по мере дифференцировки клеток происходит и развитие ЭПС.

Типы эндоплазматической сети. Детальное изучение мембран, ограничивающих каналы, вакуоли и цистерны ЭПС, позволило установить, что во многих клетках на наружной поверхности этих мембран располагаются многочисленные округлые плотные гранулы. Эти гранулы носят название рибосом. Рибосомы часто образуют скопления на поверхности мембран, ограничивающих цистерны и каналы. Однако есть участки ЭПС, где рибосом нет. Поэтому в клетках различаются два типа эндоплазматической сети: гранулярная, или шероховатая, т. е. несущая рибосомы, и гладкая. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – гладкая. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная сеть в большей степени представлена в тех клетках, где идет активный синтез липидов. Оба вида ЭПС не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей ее средой.

Перейти на страницу:
1 2 3 4 5 6 7

    Волокна с «самосознанием»

    В организме клетки «сидят» на волокнистой подложке-матриксе, препятствующей клеточной инвазии (инвазивному росту). То есть образованию метастаз. Вместе с тем в ходе внутриутробного развития клетки передвигаются. У них появляются отростки, длина которых может достигать метра (как в случае седалищного нерва).

    Поезное о биологии

    О сайте

     
Copyright © 2024 - All Rights Reserved - www.fullbiology.ru